martes, 8 de noviembre de 2016

¿Qué es el pH?

El pH es una medida de acidez o alcalinidad de una disolución. El pH indica la concentración de iones hidrógeno [H]+ presentes en determinadas disoluciones.[2]

La sigla significa: potencial hidrógeno o potencial de hidrogeniones (pondus hydrogenii o potentia hydrogenii; del latín pondus, n. = peso; potentia, f. = potencia; hydrogenium,n. =hidrógeno). Este término fue acuñado por el bioquímico danés S. P. L. Sørensen (1868-1939), quien lo definió en 1909 como el opuesto del logaritmo en base 10 o el logaritmo negativo, de la actividad de los iones hidrógeno. Esto es


Esta expresión es útil para disoluciones que no tienen comportamientos ideales, disoluciones no diluidas. En vez de utilizar la concentración de iones hidrógeno, se emplea la actividad (a), que representa la concentración efectiva.

El término "pH" se ha utilizado universalmente por lo práctico que resulta para evitar el manejo de cifras largas y complejas. En disoluciones diluidas, en lugar de utilizar la actividad del ion hidrógeno, se le puede aproximar empleando la concentración molar del ion hidrógeno.

Reacción de Neutralización

Las reacciones de neutralización, son las reacciones entre un ácido y una base, con el fin de determinar la concentración de las distintas sustancias en la disolución.
Tienen lugar cuando un ácido reacciona totalmente con una base, produciendo sal y agua. Sólo hay un único caso donde no se forma agua en la reacción, se trata de la combinación de óxido de un no metal, con un óxido de un metal.
Ácido + base → sal + agua
Por ejemplo:  HCl + NaOH → NaCl + H2O
Las soluciones acuosas son buenas conductoras de la energía eléctrica, debido a los electrolitos, que son los iones positivos y negativos de los compuestos que se encuentran presentes en la solución.
Una buena manera de medir la conductancia es estudiar el movimiento de los iones en una solución.
Cuando un compuesto iónico se disocia enteramente, se le conoce como electrolito fuerte. Son electrolitos fuertes por ejemplo el NaCl, HCl, H2O (potable), etc, en cambio, un electrolito débil es aquel que se disocia muy poco, no produciendo la cantidad suficiente de concentración de iones, por lo que no puede ser conductor de la corriente eléctrica.
Cuando tenemos una disolución con una cantidad de ácido desconocida, dicha cantidad se puede hallar añadiendo poco a poco una base, haciendo que se neutralice la disolución.
Una vez que la disolución ya esté neutralizada, como conocemos la cantidad de base que hemos añadido, se hace fácil determinar la cantidad de ácido que había en la disolución.
En todos los procesos de neutralización se cumple con la “ley de equivalentes”, donde el número de equivalentes del ácido debe ser igual al número de equivalentes de la base:
Nº equivalentes Ácido = nº equivalentes Base
Los equivalentes dependen de la Normalidad, que es la forma de medir las concentraciones de un soluto en un disolvente, así tenemos que:
N= nº de equivalentes de soluto / litros de disolución
Deduciendo :  nº equivalentes de soluto = V disolución . Normalidad
Si denominamos NA, como la normalidad en la solución ácida y NB, la normalidad de la solución básica, así como VA y VB, como el volumen de las soluciones ácidas y básicas respectivamente:
NA.VA= NB. VB
Esta expresión se cumple en todas las reacciones de neutralización. Ésta reacción se usa para la determinar la normalidad de una de las disolución, la ácida o la básica, cuando conocemos la disolución con la que la neutralizamos, añadimos así, poco a poco un volumen sabido de la disolución conocida, sobre la solución a estudiar, conteniendo ésta un indicador para poder así observar los cambios de coloración cuando se produzca la neutralización.
El valor del pH, definido como el – log[H+], cuando los equivalentes del ácido y de la base son iguales, se le conoce como punto de equivalencia. El punto de equivalencia puede ser práctico, o teórico.
En el pH, la escala del 0 al 7, es medio ácido, y del 7 al 14, medio básico, siendo el valor en torno al 7, un pH neutro.
Si valoramos la reacción entre un ácido fuerte y una base fuerte, el punto equivalente teórico estará en torno a 7, produciéndose una total neutralización de la disolución. En cambio, si se estudia un ácido débil con una base fuerte, la sal que se produce se hidrolizará, añadiendo a la disolución iones OH-, por lo tanto el punto de equivalencia será mayor que 7. Y si es el caso de un ácido fuerte con una base débil, la sal que se produce se hidroliza añadiendo los iones hidronios, siendo asñi el punto de equivalencia menos que 7.
Cuanto más cerca se encuentren los valores de los puntos teóricos y prácticos, menor será el error cometido.
Recordando conceptos:
  • Los ácidos fuertes, son aquellas sustancias que se disocian totalmente, cuando se disuelven en agua. Son ácidos fuertes el H2SO4, HCl, HNO3, etc.
pH= -log [H+] = -log[ Ac. Fuerte]
  • Ácidos de fuerza media: son aquellos que se disocian parcialmente, sus constantes ácidas o de disociación son mayores de 1 x 10^-3
  • Ácidos débiles: Son aquellos que no se disocian completamente. Cuando más pequeña es la constante ácida, más débil es la acidez.
  • Bases fuertes: se disocian totalmente, cediendo todos sus OH-. Bases fuertes son los metales alcalinos, y alcalinotérreos como pueden ser NaOH, KOH, Ba(OH)2, etc
pH= 14 + log [OH-]
  • Bases débiles: Se trata de aquellas que no se disocian completamente.
Existen unas sustancias, llamadas indicadores, que generalmente son ácidos orgánicos débiles, éstas poseen la propiedad de cambiar de color cuando cambia la acidez de la disolución donde se encuentran.
Por ejemplo, el papel tornasol, cambia a color azul al ser introducido en una disolución de carácter básico, y a color rojo, si la disolución es ácida.

 Webgrafia:

Reacciones de neutralización | La Guía de Química http://quimica.laguia2000.com/reacciones-quimicas/reacciones-de-neutralizacion#ixzz4PQ8Rm7s4

sábado, 5 de noviembre de 2016

Flujos de energía

En esta sucesión de etapas en las que un organismo se alimenta y es devorado la energía fluye desde un nivel trófico a otro. Las plantas verdes u otros organismos que realizan la fotosíntesis utilizan la energía solar para elaborar hidratos de carbono para sus propias necesidades. La mayor parte de esta energía química se procesa en el metabolismo y se pierde en forma de calor en la respiración. Las plantas convierten la energía restante en biomasa sobre el suelo como tejido leñoso y herbáceo y, bajo este, como raíces. Por último, este material, que es energía almacenada, se transfiere al segundo nivel trófico que comprende los herbívoros que pastan, los descomponedores y los que se alimentan de detritos. Si bien, la mayor parte de la energía asimilada en el segundo nivel trófico se pierde de nuevo en forma de calor en la respiración, una porción se convierte en biomasa. En cada nivel trófico los organismos convierten en biomasa menos energía de la que reciben. Por lo tanto, cuantos más pasos se produzcan entre el productor y el consumidor final queda menos energía disponible. Rara vez existen más de cuatro o o cinco niveles en una cadena trófica. Con el tiempo, toda la energía que fluye a través de los niveles tróficos se pierde en forma de calor. El proceso por medio del cual la energía pierde su capacidad de generar trabajo útil se denomina entropía.

Cadena Trofica

Las cadenas tróficas, son una serie de cadenas alimentarias íntimamente relacionadas por las que circulan energía y materiales en un ecosistema. Se entiende por cadena alimentaria cada una de las relaciones alimenticias que se establecen de forma lineal entre organismos que pertenecen a distintos niveles tróficos. La cadena trófica está dividida en dos grandes categorías: la cadena o red de pastoreo, que se inicia con las plantas verdes, algas o plancton que realiza la fotosíntesis, y la cadena o red de detritos que comienza con los detritos orgánicos. Estas redes están formadas por cadenas alimentarias independientes. En la red de pastoreo, los materiales pasan desde las plantas a los consumidores de plantas (herbívoros) y de estos a los consumidores de carne (carnívoros). En la red de detritos, los materiales pasan desde las plantas y sustancias animales a las bacterias y a los hongos (descomponedores), y de estos a los que se alimentan de detritos (detritívoros) y de ellos a sus depredadores (carnívoros).

Por lo general, entre las cadenas tróficas existen muchas interconexiones; por ejemplo, los hongos que descomponen la materia en una red de detritos pueden dar origen a setas que son consumidas por ardillas, ratones y ciervos en una red de pastoreo. Los petirrojos son omnívoros, es decir, consumen plantas y animales, y por esta razón están presentes en las redes de pastoreo y de detritos. Los petirrojos se suelen alimentar de lombrices de tierra que son detritívoras y se alimentan de hojas en estado de putrefacción.